Algebra Rule 21
Converting a root of a root into a single root
Once again, by working backwards from the value of these two expressions we can see why they are equal. If ``\sqrt[m]{\sqrt[n]{a}} = x``, then we can construct ``a`` out of combinations of ``x`` and see how the whole equation works. To make things simple, we'll start with given values of ``m`` and ``n``. If ``\sqrt[2]{\sqrt[3]{a}} = x``, then ``x = \sqrt[2]{x*x}``, which also means that ``\sqrt[2]{\sqrt[3]{(x*x)*(x*x)*(x*x)}} = x``. So ``a = (x*x)*(x*x)*(x*x) = x^6 = x^{mn}``. And happily, ``\sqrt[mn]{x^{mn}} = x`` by definition, so we have ``\sqrt[m]{\sqrt[n]{a}} = x = \sqrt[mn]{x^{mn}}``. Our example is a specific case where ``m = 2`` and ``n = 3``, but since ``a`` will always be equal to ``x^{mn}``, the equation holds regardless of the values of ``m`` and ``n``